Pararel Computation

Definisi Kompuasti Pararel

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

Hasil gambar untuk parallel komputasi adalah
Gambar 1. Contoh Pararel Komputasi

Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Tidak berarti dengan mesin paralel semua program yang dijalankan diatasnya otomatis akan diolah secara parallel. Di dalam komputasi parallel ada yang dinamakan dengan pemrograman parallel.

Definisi Pemograman Pararel

Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan (komputasi paralel), baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam suatu jaringan komputer lebih sering istilah yang digunakan adalah sistem terdistribusi (distributed computing).

Hasil gambar untuk arsitektur komputer paralel
Gambar 2. Arsitektur Komputer Pararel

Tujuan Pemograman Pararel

Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan. Analogi yang paling gampang adalah, bila anda dapat merebus air sambil memotong-motong bawang saat anda akan memasak, waktu yang anda butuhkan akan lebih sedikit dibandingkan bila anda mengerjakan hal tersebut secara berurutan (serial). Atau waktu yg anda butuhkan memotong bawang akan lebih sedikit jika anda kerjakan berdua.

Performa dalam pemrograman paralel diukur dari berapa banyak peningkatan kecepatan (speed up) yang diperoleh dalam menggunakan tehnik paralel. Secara informal, bila anda memotong bawang sendirian membutuhkan waktu 1 jam dan dengan bantuan teman, berdua anda bisa melakukannya dalam 1/2 jam maka anda memperoleh peningkatan kecepatan sebanyak 2 kali.

Perbedaan Komputasi Tunggal dan Komputasi Pararel

Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing. Pada system komputasi parallel terdiri dari beberapa unit prosesor dan beberapa unit memori. Ada dua teknik yang berbeda untuk mengakses data di unit memori, yaitu shared memory address dan message passing. Berdasarkan cara mengorganisasikan memori ini computer parallel dibedakan menjadi shared memory parallel machine dan distributed memory parallel machine.

Hasil gambar untuk komputasi tunggal
Contoh Komputasi Tunggal / Serial

Pada sistem komputasi parallel terdiri dari beberapa unit prosesor dan beberapa unit memori. Ada dua teknik yang berbeda untuk mengakses data di unit memori, yaitu shared memory address dan message passing. Berdasarkan cara mengorganisasikan memori ini komputer paralel dibedakan menjadi shared memory parallel machine dan distributed memory parallel machine.

Prosesor dan memori ini didalam mesin paralel dapat dihubungkan (interkoneksi) secara statis maupun dinamis. Interkoneksi statis umumnya digunakan oleh distributed memory system (sistem memori terdistribusi). Sambungan langsung peer to peer digunakan untuk menghubungkan semua prosesor. Interkoneksi dinamis umumnya menggunakan switch untuk menghubungkan antar prosesor dan memori.

Hasil gambar untuk komputasi paralel
Gambar 4. Contoh Komputasi Pararel

Komunikasi data pada sistem paralel memori terdistribusi, memerlukan alat bantu komunikasi. Alat bantu yang sering digunakan oleh sistem seperti PC Jaringan pada saat ini adalah standar MPI (Message Passing Interface) atau standar PVM (Parallel Virtual Machine)yang keduanya bekerja diatas TCP/IP communication layer. Kedua standar ini memerlukan fungsi remote access agar dapat menjalankan program pada masing-masing unit prosesor.

Salah satu protocol yang dipergunakan pada komputasi parallel adalah Network File System (NFS), NFS adalah protokol yang dapat membagi sumber daya melalui jaringan. NFS dibuat untuk dapat independent dari jenis mesin, jenis sistem operasi, dan jenis protokol transport yang digunakan. Hal ini dilakukan dengan menggunakan RPC. NFS memperbolehkan user yang telah diijinkan untuk mengakses file-file yang berada di remote host seperti mengakses file yang berada di lokal. Protokol yang digunakan protokol mount menentukan host remote dan jenis file sistem yang akan diakses dan menempatkan di suatu direktori, protokol NFS melakukan I/O pada remote file system. Protokol mount dan protokol NFS bekerja dengan menggunakan RPC dan mengiri dengan protokol TCP dan UDP. Kegunaan dari NFS pada komputasi parallel adalah untuk melakukan sharing data sehingga setiap node slave dapat mengakses program yang sama pada node master.

Software yang diperlukan untuk Parallel komputasi adalah PGI CDK, dimana aplikasi ini telah dilengkapi dengan Cluster Development Kit dimana software ini telah memiliki feature yang lengkap bila ingin melakukan komputasi dengan parallel prosessing karena software ini telah mensupport MPI untuk melakukan perhitungan komputasi.

Pengertian Parrael Virtual Machine (PVM)

PVM (Parallel Virtual Machine) adalah paket software yang mendukung pengiriman pesan untuk komputasi parallel antar komputer. PVM dapat berjalan diberbagai macam variasi UNIX atau pun windows dan telah portable untuk banyak arsitektur seperti PC, workstation, multiprocessor dan superkomputer.

Hasil gambar untuk parallel virtual machine
Gambar 5. Cara Kerja PVM

Sistem PVM terbagi menjadi dua. Pertama adalah daemon, pvmd, yang berjalan pada mesin virtual masing-masing komputer. Mesin virtual akan dibuat,  ketika User mengeksekusi aplikasi PVM. PVM dapat dieksekusi melalui prompt UNIX disemua host. Bagian kedua adalah library interface rutin yang mempunyai banyak fungsi untuk komunikasi antar task . Library ini berisikan rutin yang dapat dipanggil untuk pengiriman pesan, membuat proses baru, koordinasi task dan konfigurasi mesin virtual.

Salah aturan main yang penting dalam PVM adalah adanya mekanisme program master dan slave/worker. Programmer harus membuat Kode master yang menjadi koordinator proses dan Kode slave yang menerima, menjalankan, dan mengembalikan hasil proses ke komputer master. Kode master dieksekusi paling awal dan kemudian melahirkan proses lain dari kode master. Masing-masing program ditulis menggunakan C atau Fortran dan dikompilasi dimasing-masing komputer. Jika arsitektur komputer untuk komputasi paralel semua sama, (misalnya pentium 4  semua), maka program cukup dikompilasi pada satu komputer saja. Selanjutnya hasil kompilasi didistribusikan kekomputer lain yang akan menjadi node komputasi parallel. Program master hanya berada pada satu node sedangkan program slave berada pada semua node.

Pengertian MPI (Message Passing Interface)

MPI (Message Passing Interface) adalah spesifikasi API (Application Programming Interface) yang memungkinkan terjadinya komunikasi antar komputer pada network dalam usaha untuk menyelesaikan suatu tugas. Paradigma Message – Passing dengan implementasi MPI memberikan suatu pendekatan yang unik dalam membangun suatu software dalam domain fungsi tertentu, yang dalam hal ini pada lingkungan sistem terdistribusi, sehingga memberikan kemampuan pada produk software yang dibangun diatas middleware tersebut untuk dapat mengeksploitasi kemampuan jaringan komputer dan komputasi secara paralel.

Hasil gambar untuk Message Passing Interface)
Gambar 6. Proses MPI

Tujuan MPI

MPI merupakan sebuah protokol komunikasi yang sifatnya language-independent, portable dalam mensupport berbagai platform, dan memiliki spesifikasi semantic yang mengatur bagaimana perilaku setiap impelementasinya. MPI mendukukung komunikasi baik dengan tipe point-to-point maupun yang bersifat kolektif. Secara umum MPI memliki tujuan sebagai berikut :
  1. MPI akan menjadi sebuah library untuk membangun program aplikasi dan bukan distributed operating system.
  2. MPI akan mendukung thread-safe yang penting dalam symmetric multiprocessor pada lingkungan jaringan komputer yang heterogen.
  3. MPI akan mampu untuk men-deliver high-performance computing.
  4. MPI akan bersifat modular, untuk mengakselerasi development pustaka paralel yang portable.
  5. MPI akan bersifat extensible, sehingga dapat terus dikembangkan dan memenuhi kebutuhan komputasi masa akan datang.
  6. MPI akan mendukung heterogeneos komputasi.
  7. MPI akan memiliki semantic behavior yang telah terspesifikasi dengan jelas, sehingga dapat menghindari beberapa permasalahan kritis seperti race-conditions, dead-lock dsb.

Model Komputasi

1. SISD (Single Instruction, Single Data)

SISD adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1

Hasil gambar untuk SISD
Gambar 7. SISD

2. SIMD (Single Instruction, Multiple Data)

Hasil gambar untuk SIMD
Gambar 8. SIMD

menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor .

3. MISD (Multiple Instruction, Single Data)

menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Untuk contoh, kita bisa menggunakan kasus yang sama pada contoh model SIMD namun cara penyelesaian yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.

Hasil gambar untuk MISD
Gambar 9. MISD

4. MIMD ( Multiple Instruction, Multiple Data)

Hasil gambar untuk MIMD
Gambar 10. MIMD

menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.

Hasil gambar untuk gambar arsitektur menurut flynn
Gambar 11. Arsitektur menurut flynn

Sumber

  1. http://nazaruddin.blog.unigha.ac.id/2013/08/24/pengertian-komputasi-paralel/
  2. raharjo.staff.telkomuniversity.ac.id/files/2015/08/Week1.2.pdf
  3. ajuarna.staff.gunadarma.ac.id/Downloads/files/9254/ArtikelEpilog.pdf
  4. http://akhmadilman46.blogspot.co.id/2013/05/komputasi-paralel.html
  5. https://staff.blog.ui.ac.id/herik/2008/07/02/pemrograman-paralel-dengan-parallel-virtual-machine-pvm/
  6. http://ketutrare.blogspot.co.id/2013/04/mpi-message-passing-interface.html